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Abstract. This paper seeks to contribute to the current existing

graph theory. We do so by analyzing and explaining certain proper-
ties and characteristics of two different graphs. One of which is the

Web graph, designed and defined by the authors of this paper, while

the other is a more well-known and predefined Book graph. These
definitions and defined characteristics should serve as a contribution

to previous works of graph theory on a practical level.

1. Introduction

This paper serves as a contribution to graph theory, which was first
initiated by Swiss mathematician Leonhard Euler in 1736 [2]. Within this
work, we analyze the graph theory of a pre-defined Book graph in addition
to a newly defined Web graph. Further, we assess and provide proof for
differing properties within these graphs. These proofs as well as these
analyses are written with the presupposition that the reader knows basic
algebra and simple graph theory.

The Web graph began with a discussion of a grid graph. Our team
understood that the concept of coordinate graphs and similar structures
are well researched, and wanted to attempt some different approach to the
idea. The Web graph could serve as a representation of a coordinate system
that is more circular or spiral in nature. This concept could be related to
the layout of Paris, France [4]. This would be opposed to the grid-like
layout of cities like New York City, NY.
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2. Background and definitions

2.1. Book Graph Bn. ∀n ∈ Z∗, a Book Graph Bn is a connected graph
with n pages, where one page is a cycle subgraph of four vertices and each
page has one common pair of vertices shared among each page subgraph.
The common pair of vertices that are shared among each page subgraph
will be called the “spine”, similar to how the spine of a book connects its
pages.

Below is the graph B4.
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2.2. Definition of Bn. The vertex set of Bn is defined as:

V (Bn) = VA ∪ VB

where

VA = {a0, a1, a2, ...an}
and

VB = {b0, b1, b2, ...bn},
each representing a vertex subset making up the ‘top’ and ‘bottom’

halves of Bn.

The edge set of Bn is defined as the union of three disjoint edge subsets:

An =

n⋃
i=1

{a0, ai}, denoting the ‘top’ edges,

Tn =

n⋃
i=1

{b0, bi}, denoting the ‘bottom’ edges,
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and

Pn =

n⋃
i=0

{ai, bi}, denoting edges joining the top and bottom vertices,

such that
E = An ∪ Tn ∪ Pn.

Thus, each vertices of a subset VA are all connected to a center vertex
a0, and all vertices of a subset VB are all connected to a center vertex b0.
Finally, each vertex in VA is connected to a corresponding vertex in VB .

2.3. Order and Size of Bn. Defining the order and size of a book graph,
both equations can be properly understood while following along in drawing
a graph. When first drawing a book graph, the ”spine” of the graph will be
drawn. According to the definition of a book graph, the spine contributes
an edge, and two vertices as previously defined. This gives a book graph of
n = 0 an order of 2 and a size of 1.

Further, for each added page, there is a total of two vertices that are
added, and three edges, per page. Therefore, the definitions of the order
can be designated as:

|V (Bn)| = 2n+ 2

where n is multiplied by 2 to show the two vertices added for each page
n, and the trailing added two representing the initial order sourced from
the graph’s spine. Finally, the size of the graph can be represented by the
equation

|E(Bn)| = 3n+ 1

where n is multiplied by 3 to represent the three edges added per page, and
the trailing added one represents the one edge in the spine of the graph.

2.4. Minimum and maximum degree of Bn. When the book graph
has zero pages, i.e. n = 0, there are only two vertices: a0 and b0, which
constitute the spine.

A page in this graph consists of two adjacent vertices where one of them
is also adjacent to a0 and the other is also adjacent to b0. Therefore, the
degree of each page’s vertices is 2. Additionally, for each page added to the
book graph, the degree a0 and b0 will increase by one because they each get
one more adjacent vertex. This means that the two vertices on the spine of
our book graph will always have a degree of n+1 because they are adjacent
to each other and on each page. This is our maximum degree.

When n = 0, the degree of a0 and b0 is one, as they are the only vertices
and they are adjacent to each other. Since the degrees of each vertex on
a page are always 2 and each page added increases the degree of a0 and
b0, we know adding additional pages will not give us a vertex with a lower
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degree than when n = 0, where the degree of a0 and b0 is 1. Therefore, the
minimum degree occurs when n = 0, as a value of 1.

2.5. Web Graph Wn,m. A web graph Wn,m is a connected graph with
n rings, and m vertices on each ring, where n must be at least 1 and m
cannot be less than 3. Each ring is a cycle sub-graph containing m ver-
tices. If the vertex is not the center vertex, or bullseye vertex, or on the nth
ring, each vertex will have a corresponding adjacent inner and outer vertex.

Below is an example for the graph W3,6

2.6. Definition of Wn,m. The vertex set of Wn,m is defined as the union
of each ring of vertices, and the center vertex of the graph:

V (Wn,m) =

n⋃
i=1

Vi ∪ {v0}

where

Vi = {vi1, vi2, vi3, ...vim}
and v0 is the vertex in the very center or bullseye of the graph.
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The edge set can be defined as the union of three distinct subsets of
edges: the set of edges around each ring, the set of edges through all the
rings, and the set of edges connecting the center, or bullseye vertex to all
the vertices on the innermost ring. The formal definition can be defined as:

E(Wn,m) =

a⋃
i=1

Ei ∪
b⋃

i=1

Fi ∪H

where the edges around the rings, namely ring-edges, are:

Ei = {{vik, vik+1} | 1 ≤ k ≤ m− 1} ∪ {vi1, vim}

and the edges connecting each ring, namely interring-edges, are:

Fi = {{vki , vk+1
k+1} | 1 ≤ k ≤ n}

and the edges connecting the center vertex to the innermost ring are (i.e.
innermost interring-edges):

H = {{v0, v1i } | 1 ≤ i ≤ m}.

Also, since each ring is a cycle graph Cm, with m vertices, we can la-
bel each ring as C1, C2, C3, ..., Cn, from the innermost ring, C1, to the
outermost ring, Cn.

2.7. Order and Size of Wn,m. The order of any Web graph Wn,m can be
calculated as:

|V (Wn,m)| = n ·m+ 1.

This is because, for each of the n rings, there are m vertices that make up
a cycle subgraph. The only vertex not part of a ring is the center vertex,
which is represented by the addition of 1 to n ·m.

The size of a Web graph evaluates as:

|E(Wn,m)| = 2 · n ·m.

Counting from the center vertex, there are m edges connecting the cen-
ter to the innermost ring. Let these edges connecting rings be called
interring edges. There are exactly m interring edges connecting each inner
ring to an outer ring, and there are n rings that require to be connected.
So we have

total interring edges = n ·m.
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Counting the number of edges making up each ring, we know that a cycle
graph of k vertices always has k edges [3]. Since our rings have m vertices,
they have m edges, and we have n rings, therefore,

total ring edges = n ·m.

Combining these disjoint sets of edges constitutes the set edge with 2·n·m
elements.

2.8. Minimum and Maximum Degree of Wn,m. First, there are a few
characteristics that should be understood. Firstly, the centermost vertex
of the web graph will always have the degree of m. Therefore, due to the
bound of m ≥ 3, the minimum degree of the center vertex is 3. Further, all
vertices within the outermost ring, will all have degrees of 3 as well. Two
would come from their neighbors among the same ring, and one with its
connecting vertex within the next inner ring. Lastly, all vertices in inner
rings will thus have a degree of 4. The last degree stems from the edge that
leads to a vertex in the next outer ring.

Since neither of the mentioned vertices will have a degree less than 3,
this will be designated as the minimum for web graphs. Further, since there
is no upper bound on the m variable within a web graph, the degree of the
center vertex also has no upper bound. Thus, the maximum of a web graph
is infinite.

3. Results

Theorem 3.1. ∀ book graph Bn, where n ∈ Z∗, the dominating number of
is always equal to 2.

Proof. Maximal size of dominating set:
Let Bn be a generic but particular book graph with n positive integer of
pages. By definition, the dominating number is the size of the minimal set
of vertices needed to connect the whole graph. By definition, Bn has two
vertices, a0 and b0, constituting the spine of the book. Since all the other
vertices are adjacent to either a0 or b0, we have

Maximal dominating set = {a0, b0},

providing the upper bound of the dominating number to 2.

Minimal size of dominating set:
Suppose Bn has a dominating number of 1. This implies that there exists
vertex v that is adjacent to all the other vertices. Given that the order
of Bn is 2n + 2, v must have a degree of 2n + 1. However, the maximum
degree of a vertex in Bn is n+1. Thus, the minimal size of the dominating
set is 2.
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Theorem 3.2. The chromatic index of a Book graph of size n will be n+1

Proof. Here is an example of how a Book graph can be given a chromatic
index of n+ 1. In this particular case, the graph is B4 and is given a chro-
matic index of 5.

Suppose not, suppose a Book graph was given a chromatic index of n.
By definition of a Book graph, the vertices that make up the spine will have
a degree of n+1. This indicates there are n+1 edges that are incident on
the mentioned vertex.

With n + 1 edges being incident on one vertex, it is impossible to make
all of them different colors with a choice of n colors.

Therefore, the chromatic index of a Book graph cannot be n, and thus,
is ≥ n+ 1.

Further, every edge within the subset An of the graph edge set must be
a different color since every each within that set is incident on vertex a0.
These same colors can be mirrored by the edges within the subset Tn since
they all share b0, but share no vertices with the edges within An. That
brings the current total of colors to n.

Lastly, the edges in Pn can be given the same color since they have no
shared vertices, as long as that color is different from the already defined
n amount. This is due to every vertex contained in Pn is contained also
in An or Tn. Therefore, since the chromatic index must be ≥ n + 1 and
≤ n+ 1, the true value must be n+ 1.
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Theorem 3.3. The chromatic number of a given web graph wn,m is 3 if
m is even, and 4 if m is odd.

Proof. Suppose Wn,m is a particular but arbitrarily chosen web graph and
suppose c(W ) is the chromatic number of Wn,m. By the definition of a
chromatic number, c(W ) is the smallest number of colors needed to color
the vertices of the graph so that no two adjacent vertices share the same
color.

By the definition of a web graph, the edge set of Wn,m is

E(Wn,m) =

a⋃
i=1

Ei ∪
b⋃

i=1

Fi ∪H.

In this set, the subset H represents the edges connecting v0, the bullseye
vertex, to the vertices in the 1st ring. By the definition of H,

H = {{v0, v1i }|1 ≤ i ≤ m}

Since all vertices on the ring are adjacent to v0, the bullseye vertex must
be a different color then the edges on the ring. This means c(W ) must be
at least 2.

Next, Ei, as defined in our edge set, tells us by the definition of Ei,

Ei = {{vik, vik+1}|1 ≤ k ≤ m− 1} ∪ {vi1, vim}.

This shows that on each ring there is a circuit. If a given vertex on a ring
is the “kth” vertex, then there is an adjacent k− 1 vertex and an adjacent
k + 1 vertex. The “kth” vertex must be a different color then its adjacent
k − 1 and k + 1 vertices. However, the k − 1 vertex and k + 1 are not
adjacent so they can be the same color. On the 1st ring, all the vertices are
adjacent to the bullseye, and adjacent vertices must have different colors.
Therefore, c(W ) must be at least 3.

According to the definition of a web graph, on a given ring, there are m
vertices. These vertices make up a circuit c. There are two cases shown
below where the circuit c can have a differing chromatic number.

Case 1 (m is an even number): If m is an even number, c can al-
ternate two colors amongst the vertices, and we will end with a different
color than we started with. Referring back to Ei in the edge set of a web
graph, this ensures that the vertices in the edge {vi1, vim} are different col-
ors, where m is the number of the last vertex in c. Therefore, on a given
ring, if m is even, only two colors are needed. This means c(W ) for a given
ring is 2, and our c(W ) is still 3.
Case 2 (m is an odd number): If m is an odd number, on each ring or
circuit c, if we alternate two colors amongst the vertices, and we will end
with the same color than we started with. This will not work because it will
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make the adjacent vertices in the edge {vi1, vim} the same color. Therefore,
a third color is needed for the last vertex in c. Since three colors are needed
on each ring, c(W ) for the graph must be 4.

Lastly, we must show that the interring edges do not play a role in
the chromatic number. As defined in the edge set, the interring edges are
represented as Fi, where Fi = {{vki , v

k+1
i }1 ≤ k ≤ n}. Fi shows that the i

number vertex on each ring k, is connected to the i number vertex on the
k+1 ring. If n > 1, then we know that the vertices of ring 2 cannot have the
same coloring pattern as the vertices on ring 1. This pattern will continue
and we can say that the vertices of adjacent rings cannot be the same color.
If we make the vertices of odd-numbered rings have the same colors and the
vertices of even-numbered rings have the same colors, then we can ensure
that the chromatic number will not increase because interring edges won’t
increase the chromatic number. If v represents the vertex, k is the number
ring, and j its position on the ring, we can define the coloring of vertices
on rings > 1 as:

Color vkj the same as v1j if k is odd, or v1j+1 if k is even for 1 ≤ j ≤ m.

This essentially colors all the vertices of all odd rings as the same as the
innermost ring and colors the vertices of all even rings as the innermost
ring, but starting with the j + 1 vertex, which has a different color. This
means that adjacent vertices connected by interring edges will be different
colors. Therefore, all possible vertices have been colored and c(W ) has not
increased. This means that c(W ) is still 3 if m is even and 4 if m is odd.

Theorem 3.4. The independence number of a Web Graph Wn,m is defined
as

α(Wn,m) = n ·
⌊m
2

⌋
Proof. Let Wn,m be a particular but arbitrary Web graph with n rings and
m vertices on each ring.

Case 1: n = 1. When n = 1, we have a wheel graph Wm+1 with m+ 1
vertices. By definition, Wm+1 = complete graph of 1 vertex, K1, + C1

m.

By Theorem 2.6 in [1], α(Wm+1) =
⌊m
2

⌋
.

Case 2: n > 1. Let I be the maximal independence set of Wn,m. Let
the center vertex v0 /∈ I, since if v0 ∈ I, none of the m vertices in C1 can
be in I. Given case 1, we can select ⌊m

2 ⌋ non-adjacent vertices in C1 to be

in I. It follows that there are ⌊m
2 ⌋ vertices in C2 that cannot be in I since

they are adjacent to those selected in C1 by the interring edges.
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This means there are m− ⌊m
2 ⌋ vertices in C2 that may be selected. So,

among those vertices, since (m − ⌊m
2 ⌋) ≥ ⌊m

2 ⌋ we know that ⌊m
2 ⌋ vertices

that are non-adjacent and thus can be added to I. Proceeding in this way
for every ring Ci

m, where 2 ≤ i ≤ n, we have a total of n rings with each

⌊m
2 ⌋ non-adjacent vertices. So the size of I is |I| = α(Wn,m) = n ·

⌊m
2

⌋
.

4. Conclusion

This paper successfully analyzed two distinct graph structures: a pre-
defined Book graph and a newly defined Web graph. We explored the
properties of these graphs including their order, size, minimum and max-
imum degree, chromatic number, dominating number, and independence
number. Theorems were proven to solidify these properties for both the
Book and Web graphs. These analyses contribute to the current under-
standing of graph theory by introducing a novel web graph structure and
exploring its characteristics alongside a well-established Book graph.
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